Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Clinical Quantitative Evaluation of Hepatobiliary Transport of [ 11 C]Dehydropravastatin in Humans Using Positron Emission Tomography.

Various positron emission tomography (PET) probes have been developed to assess in vivo activities in humans of drug transporters, which aid in the prediction of pharmacokinetic properties of drugs and the impact of drug-drug interactions. We developed a new PET probe, sodium (3 R , 5 R )-3, 5-dihydroxy-7-((1 S, 2 S , 6 S , 8 S )-6-hydroxy-2-methyl-8- ((1-[11 C]-( E )-2-methyl-but-2-enoyl) oxy) -1, 2, 6, 7, 8, 8 a -hexahydronaphthalen-1-yl) heptanoate ([11 C]DPV), and demonstrated its usefulness for the quantitative investigation of Oatps (gene symbol SLCO ) and Mrp2 (gene symbol ABCC2 ) in rats. To further analyze the species differences and verify the pharmacokinetic parameters in humans, serial PET scanning of the abdominal region with [11 C]DPV was performed in six healthy volunteers with and without an OATP1Bs and MRP2 inhibitor, rifampicin (600 mg, oral), in a crossover fashion. After intravenous injection, [11 C]DPV rapidly distributed to the liver and kidney followed by secretion into the bile and urine. Rifampicin significantly reduced the liver distribution of [11 C]DPV 3-fold, resulting in a 7.5-fold reduced amount of excretion into the bile and the delayed elimination of [11 C]DPV from the blood circulation. The hepatic uptake clearance (CLuptake, liver ) and canalicular efflux clearance (CLint, bile ) of [11 C]DPV (544 ± 204 and 10.2 ± 3.5 µ l/min per gram liver, respectively) in humans were lower than the previously reported corresponding parameters in rats (1800 and 298 µ l/min per gram liver, respectively) (Shingaki et al., 2013). Furthermore, rifampicin treatment significantly reduced CLuptake, liver and CLint, bile by 58% and 44%, respectively. These results suggest that PET imaging with [11 C]DPV is an effective tool for quantitatively characterizing the OATP1Bs and MRP2 functions in the human hepatobiliary transport system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app