Add like
Add dislike
Add to saved papers

The effects of morphine on gas exchange, ventilation pattern and ventilatory responses to hypercapnia and hypoxia in dwarf caiman (Paleosuchus palpebrosus).

Morphine and other opioids cause respiratory depression in high doses and lower the ventilatory responses to hypoxia and hypercapnia in mammals. Recent studies indicate that turtles respond similarly, but although they are used routinely for post-surgical analgesia, little is known about the physiological effects of opioids in reptiles. We therefore investigated the effects of morphine (10 and 20 mg kg-1 ) on gas exchange and ventilation in six dwarf caiman (Paleosuchus palpebrosus) using pneumotachography in a crossover design. Intraperitoneal injections of morphine changed the ventilation pattern from a typical intermittent/periodic pattern with a few or several breaths in ventilatory bouts to single breaths and prolonged the apnoea, such that respiratory frequency was depressed, while tidal volume was elevated. Furthermore, the duration of inspiration and especially expiration was prolonged. The resulting decrease in minute ventilation was attended by a lowering of the respiratory exchange ratio (RER) (especially for 20 mg kg-1 dose) indicating CO2 retention with a long time constant for approaching the new steady state. The changes in ventilation pattern and gas exchange reached a new stable level approximately 3 h after the morphine injection and did not significantly affect steady state O2 uptake, i.e. O2 consumption. As expected, the ventilatory response to 5% O2 was lower in morphine-treated caimans, but minute ventilation upon exposure to 2% CO2 did not differ significantly different from control animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app