Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of TACC3 by a small molecule inhibitor in breast cancer.

Studies have shown that transforming acidic coiled-coil protein 3 (TACC3), a key component of centrosome-microtubule dynamic networks, is significantly associated with various types of human cancer. We have recently reported that high levels of TACC3 are found in breast cancer, lead to the accumulation of spontaneous DNA damage due to defective DNA damage response signaling, and confer cellular sensitivity to radiation and poly(ADP-ribose) polymerase (PARP) inhibitors. Although our study suggests a potential role of TACC3 as a biomarker in breast cancer detection and prediction of therapy outcome, its role as a therapeutic target in breast cancer is not well studied. In this study, we show that a small molecule TACC3 inhibitor, KHS101, suppresses cell growth, motility, epithelial-mesenchymal transition (EMT), and breast cancer cell stemness while it induces apoptotic cell death. Quantitative multiplexed proteomic analysis using tandem mass tags (TMTs) revealed that KHS101 alters multiple biological processes and signaling pathways, and significantly reduces the expression of mitotic kinases Aurora A and Polo-like kinase 1 (PLK1), which are closely associated with TACC3. Our findings therefore provide a new insight into the potential mechanisms of the action of KHS101 and suggest its possible use as a dual or multi-targeting mitotic inhibitor in breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app