Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

R-spondin3-LGR4 signaling protects hepatocytes against DMOG-induced hypoxia/reoxygenation injury through activating β-catenin.

BACKGROUND & AIMS: Leucine-rich repeat G-protein-coupled receptor 4 (LGR4) and its ligands R-spondin1-4 (Rspos) have been vastly investigated in embryonic development. The biological functions of Rspos-LGR4 system in liver remains largely unknown. Here, we explored whether it protects hepatocytes against hypoxia/reoxygenation (H/R) induced damage.

METHODS: H/R injury was induced by dimethyloxalylglycine (DMOG) in AML12 cells and the effects of Rspo3 on cell proliferation and apoptosis were assessed. Specific shRNAs were used to interfere LGR4 or β-catenin.

RESULTS: DMOG caused hepatocytes damage evidenced by increase in HIF-1α, cell death and apoptosis genes p27 and Bax, with concurrent decrease of cell proliferation genes PCNA and CyclinD1. Of all the Rspos, Rspo3 is predominantly expressed in AML12 hepatocytes. Importantly, Rspo3 demonstrated an alteration in a manner similar to proliferation-related genes during H/R injury. Rspo3 pretreatment rendered hepatocytes less vulnerable to DMOG induced H/R injury. Ablation of LGR4 using shRNA attenuated the protective effects of Rspo3. Wnt3a also protected AML12 cells from damages caused by H/R, showing enhanced proliferation activity. Notably, knockdown of β-catenin in hepatocytes completely abolished the effect of Rspo3 pretreatment on the expression levels of PCNA and CyclinD1.

CONCLUSION: Rspo3-LGR4 axis protects hepatocytes from H/R injury via activating β-catenin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app