Add like
Add dislike
Add to saved papers

Structural and biochemical characterization of a GH3 β-glucosidase from the probiotic bacteria Bifidobacterium adolescentis.

Biochimie 2018 May
Bifidobacterium is an important genus of probiotic bacteria colonizing the human gut. These bacteria can uptake oligosaccharides for the fermentative metabolism of hexoses and pentoses, producing lactate, acetate as well as short-chain fatty acids and propionate. These end-products are known to have important effects on human health. β-glucosidases (EC 3.2.1.21) are pivotal enzymes for the metabolism and homeostasis of Bifidobacterium, since they hydrolyze small and soluble saccharides, typically producing glucose. Here we describe the cloning, expression, biochemical characterization and the first X-ray structure of a GH3 β-glucosidase from the probiotic bacteria Bifidobacterium adolescentis (BaBgl3). The purified BaBgl3 showed a maximal activity at 45 °C and pH 6.5. Under the optimum conditions, BaBgl3 is highly active on 4-nitrophenyl-β-d-glucopyranoside (pNPG) and, at a lesser degree, on 4-nitrophenyl-β-d-xylopyranoside (pNPX, about 32% of the activity observed for pNPG). The 2.4 Å resolution crystal structure of BaBgl3 revealed a three-domain structure composed of a TIM barrel domain, which together with α/β sandwich domain accommodate the active site and a third C-terminal fibronectin type III (FnIII) domain with unknown function. Modeling of the substrate in the active site indicates that an aspartate interacts with the hydroxyl group of the C6 present in pNPG but absent in pNPX, which explains the substrate preference. Finally, the enzyme is significantly stabilized by glycerol and galactose, resulting in considerable increase in the enzyme activity and its lifetime. The structural and biochemical studies presented here provide a deeper understanding of the molecular mechanisms of complex carbohydrates degradation utilized by probiotic bacteria as well as for the development of new prebiotic oligosaccharides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app