JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cellular differentiation, bioactive and mechanical properties of experimental light-curing pulp protection materials.

OBJECTIVE: Materials for pulp protection should have therapeutic properties in order to stimulate remineralization and pulp reparative processes. The aim of this study was to evaluate the mechanical properties, biocompatibility, cell differentiation and bioactivity of experimental light-curable resin-based materials containing bioactive micro-fillers.

METHODS: Four calcium-phosphosilicate micro-fillers were prepared and incorporated into a resin blend: 1) Bioglass 45S5 (BAG); 2) zinc-doped bioglass (BAG-Zn); 3) βTCP-modified calcium silicate (β-CS); 4) zinc-doped β-CS (β-CS-Zn). These experimental resins were tested for flexural strength (FS) and fracture toughness (FT) after 24h and 30-day storage in simulated body fluid (SBF). Cytotoxicity was evaluated using MTT assay, while bioactivity was evaluated using mineralization and gene expression assays (Runx-2 & ALP).

RESULTS: The lowest FS and FT at 24h was attained with β-CS resin, while all the other tested materials exhibited a decrease in FS after prolonged storage in SBF. β-CS-Zn maintained a stable FT after 30-day SBF aging. Incorporation of bioactive micro-fillers had no negative effect on the biocompatibility of the experimental materials tested in this study. The inclusion of zinc-doped fillers significantly increased the cellular remineralization potential and expression of the osteogenic genes Runx2 and ALP (p<0.05).

SIGNIFICANCE: The innovative materials tested in this study, in particular those containing β-CS-Zn and BAG-Zn may promote cell differentiation and mineralization. Thus, these materials might represent suitable therapeutic pulp protection materials for minimally invasive and atraumatic restorative treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app