Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

AIBP reduces atherosclerosis by promoting reverse cholesterol transport and ameliorating inflammation in apoE -/- mice.

Atherosclerosis 2018 June
BACKGROUND AND AIMS: ApoA-1 binding protein (AIBP) is a secreted protein that interacts with apoA-I and accelerates cholesterol efflux from cells. We have recently reported that AIBP promotes apoA-1 binding to ABCA1 in the macrophage cell membrane, partially through 115-123 amino acids. However, the effects of AIBP on the development of atherosclerosis in vivo remain unknown.

METHODS: ApoE-/- mice with established atherosclerotic plaques were infected with rAAV-AIBP or rAAV-AIBP(Δ115-123), respectively.

RESULTS: AIBP-treated mice showed reduction of atherosclerotic lesion formation, increase in circulating HDL levels and enhancement of reverse cholesterol transport to the plasma, liver, and feces. AIBP increased ABCA1 protein levels in aorta and peritoneal macrophages. Furthermore, AIBP could diminish atherosclerotic plaque macrophage content and the expression of chemotaxis-related factors. In addition, AIBP prevented macrophage inflammation by inactivating NF-κB and promoted the expression of M2 markers like Mrc-1 and Arg-1. However, lack of 115-123 amino acids of AIBP(Δ115-123) had no such preventive effects on the progression of atherosclerosis.

CONCLUSIONS: Our observations demonstrate that AIBP inhibits atherosclerosis progression and suggest that it may be an effective target for prevention of atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app