JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evidence for the Involvement of the Dopaminergic System in Seizure and Oxidative Damage Induced by Tramadol.

Tramadol (TR) is a synthetic analgesic drug with central function that can induce seizures even at therapeutic doses. The exact mechanism of TR effect on seizure generation is not clear, but inhibition of the serotonin and nitric oxide pathways and inhibitory effects on GABA receptors are the most common hypotheses about the seizure-inducing mechanism of the TR. This study aimed to evaluate the role of dopaminergic system on the seizure and oxidative damage induced by TR using agonist and antagonist drugs of this system in the Albino mice. Clonic seizure induced by TR was evaluated as seizure threshold. Haloperidol (0.2 mg/kg, IP), a predominantly D2 receptor antagonist, and cabergolin (0.5 mg/kg, IP), a dopamine agonist specific for the D2 receptors, were injected 60 minutes before the seizure induction. The seizure threshold was significantly increased by dopaminergic antagonist, but it was decreased significantly by pretreatment with the selective agonist. Oxidative stress biomarkers (reactive oxygen species, lipid peroxidation, and protein carbonyl content) significantly increased and glutathione content significantly decreased in brain mitochondria by TR compared with the control group, whereas oxidative markers were decreased significantly after pretreatment with haloperidol compared with the TR group. This study revealed that the dopaminergic system is involved in TR-induced seizure, and meanwhile, inhibition of dopamine D2 receptors can increase the TR threshold seizure and decrease the oxidative damage in the brain mitochondria. Conversely, stimulation of dopamine D2 receptors by cabergolin can decrease the TR threshold seizure and glutathione content in the brain mitochondria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app