Add like
Add dislike
Add to saved papers

Expression profiling of genes encoding ABA route components in response to dehydration or various light conditions in poplar buds and leaves.

In this report, the members of PP2C, SnRK2a and Rboh oxidase families from Arabidopsis and poplar were studied in silico, and the expression profiles of the some of them were specified in Populus tremula buds and adult leaves. In poplars, the counterparts of ABI1- and ABI2-like protein phosphatases are lacking, but poplar genomes encode three HAB-like proteins denoted in this work as HAB1, HAB3a and HAB3b, and the counterparts of the two latter ones are absent in Arabidopsis. Nonetheless, they may be present in other species. In poplars, SnRK2 subclass III includes two SnRK2.6-like protein kinases denoted by us as SnRK2.6a and SnRK2.6b, and only one SnRK2.2 corresponding to SnRK2.2 and SnRK2.3 ones from Arabidopsis. In contrast to Arabidopsis, the poplar Rboh family involves two RbohD- and RbohF-like proteins denoted here as RbohD1 and RbohD2, and RbohF1 and RbohF2, respectively. The expressions of genes encoding the above components of the ABA route were studied in Populus tremula dehydrated buds and adult leaves not subjected to stress but exposed to natural daylight or to darkness, and to inhibition of ethylene biosynthesis or signaling route by cobalt or silver ions, respectively. In leaves, the light conditions seemed to be the most pronounced factor, from among the studied stimuli, controlling the expression Ptre-HAB3a, Ptre-HAB1, Ptre-SnRK2.6a and Ptre-RbohF2 genes, their expression was upregulated in darkness. This observation implies that these genes may be important for dark-induced stomatal closure regulation. Ethylene negatively affected the expression of three studied Rboh genes and Ptre-HAB1one but only at daylight, whereas its positive effect on the of Ptre-HAB3a was shown in the dark exposed leaves. In buds, three studied Rboh genes took part in the early response to dehydration, however their participation involved the visibly highest level of the Ptre-RbohD1 transcripts, followed by Ptre-RbohF2 and the lowest one of Ptre-RbohF1. Nonetheless, the further stress-induced superoxide anion generation seemed to depend on the enhanced expression of the Ptre-RbohD1 and Ptre-RbohF2 genes only, still with a significantly higher level of the Ptre-RbohD1 one. Ptre-RbohD2 transcripts were found neither in leaves nor in buds. The expression of the other genes discussed in the present work was either slightly upregulated at moderate stress or did not significantly change in response to dehydration. The protein kinase activity of overexpressed Ptre-SnRK2.6a and Ptre-SnRK2.6b was confirmed in in vitro protein kinase assay and compared to that of SnRK2.6/OST1 one from Arabidopsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app