Add like
Add dislike
Add to saved papers

A novel, simplified and stability-indicating high-throughput ultra-fast liquid chromatography method for the determination of rosmarinic acid in nanoemulsions, porcine skin and nasal mucosa.

Currently, there is an increasing interest on the development of topical formulations containing rosmarinic acid (RA) due to its well-documented antioxidant activity. This study aimed to develop and validate a stability-indicating ultra-fast liquid chromatography (UFLC) method for the determination of RA in nanoemulsions, porcine skin and nasal mucosa intended to be applied in permeation/retention studies and for development of topical nanoemulsions. Chromatographic separation was carried out using a C18 column packed with 2.6 μm particle size in isocratic conditions using as mobile phase water:acetonitrile (83:17, v/v), acidified with 0.1% trifluoracetic acid (v/v), with a total time of analysis of 3.5 min and detection at 330 nm. RA analysis was specific in the presence of both non-biological (blank nanoemulsion and receptor fluid) and biological matrices (porcine ear skin and porcine nasal mucosa). No interference of degradation products of RA was verified after different stress conditions such as acidic, alkaline, oxidative, light exposure (UV-A and UV-C) and thermal demonstrating the method stability-indicating property. The analytical (0.1-10.0 μg·mL-1 ) and bioanalytical (0.5-10.0 μg·mL-1 ) linearity was proved by analysis of the calibration curves of RA and no matrix effect was observed. The method was sensitive, precise and accurate, and showed recovery higher than 85%. The method was considered robust as evaluated by a Plackett-Burman experimental design. In the validated conditions, the RA was determined in the nanoemulsions obtained by spontaneous emulsification procedure (1.007 ± 0.040 mg·mL-1 ), porcine ear skin (1.13 ± 0.19 μg·cm-2 ) and nasal mucosa (22.46 ± 3.99 μg·cm-2 ) after retention/permeation studies. Thus, a highly sensitive, simple, fast and stability-indicating method was developed for RA analysis during the development of topical nanoemulsions and bioanalytical assays in complex matrices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app