Add like
Add dislike
Add to saved papers

Structure-activity relationships of strigolactones via a novel, quantitative in planta bioassay.

Strigolactones (SLs) are plant hormones with various functions in development, responses to stress, and interactions with (micro)organisms in the rhizosphere, including with seeds of parasitic plants. Their perception for hormonal functions requires an α,β-hydrolase belonging to the D14 clade in higher plants; perception of host-produced SLs by parasitic seeds relies on similar but phylogenetically distinct proteins (D14-like). D14 and D14-like proteins are peculiar receptors, because they cleave SLs before undergoing a conformational change that elicits downstream events. Structure-activity relationship data show that the butenolide D-ring is crucial for bioactivity. We applied a bioisosteric approach to the structure of SLs by synthetizing analogues and mimics of natural SLs in which the D-ring was changed from a butenolide to a lactam and then evaluating their bioactivity. This was done by using a novel bioassay based on Arabidopsis transgenic lines expressing AtD14 fused to firefly luciferase, in parallel with the quantification of germination-inducing activity on parasitic seeds. The results obtained showed that the in planta bioassay is robust and quantitative, and thus can be confidently added to the SL-survey toolbox. The results also showed that modification of the butenolide ring into a lactam one significantly hampers the biological activity exhibited by SLs possessing a canonical lactonic D-ring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app