Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

An In Vivo Blood-brain Barrier Permeability Assay in Mice Using Fluorescently Labeled Tracers.

Blood-brain barrier (BBB) is a specialized barrier that protects the brain microenvironment from toxins and pathogens in the circulation and maintains brain homeostasis. The principal sites of the barrier are endothelial cells of the brain capillaries whose barrier function results from tight intercellular junctions and efflux transporters expressed on the plasma membrane. This function is regulated by pericytes and astrocytes that together form the neurovascular unit (NVU). Several neurological diseases such as stroke, Alzheimer's disease (AD), brain tumors are associated with an impaired BBB function. Assessment of the BBB permeability is therefore crucial in evaluating the severity of the neurological disease and the success of the treatment strategies employed. We present here a simple yet robust permeability assay that have been successfully applied to several mouse models both, genetic and experimental. The method is highly quantitative and objective in comparison to the tracer fluorescence analysis by microscopy that is commonly applied. In this method, mice are injected intraperitoneally with a mix of aqueous inert fluorescent tracers followed by anesthetizing the mice. Cardiac perfusion of the animals is performed prior to harvesting brain, kidneys or other organs. Organs are homogenized and centrifuged followed by fluorescence measurement from the supernatant. Blood drawn from the cardiac puncture just before perfusion serves for normalization purpose to the vascular compartment. The tissue fluorescence is normalized to the wet weight and serum fluorescence to obtain a quantitative tracer permeability index. For additional confirmation, the contralateral hemi-brain preserved for immunohistochemistry can be utilized for tracer fluorescence visualization purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app