Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

A High Content Screen in Macrophages Identifies Small Molecule Modulators of STING-IRF3 and NFkB Signaling.

ACS Chemical Biology 2018 April 21
We screened a library of bioactive small molecules for activators and inhibitors of innate immune signaling through IRF3 and NFkB pathways with the goals of advancing pathway understanding and discovering probes for immunology research. We used high content screening to measure the translocation from the cytoplasm to nucleus of IRF3 and NFkB in primary human macrophages; these transcription factors play a critical role in the activation of STING and other pro-inflammatory pathways. Our pathway activator screen yielded a diverse set of hits that promoted nuclear translocation of IRF3 and/or NFkB, but the majority of these compounds did not cause activation of downstream pathways. Screening for antagonists of the STING pathway yielded multiple kinase inhibitors, some of which inhibit kinases not previously known to regulate the activity of this pathway. Structure-activity relationships (SARs) and subsequent chemical proteomics experiments suggested that MAPKAPK5 (PRAK) is a kinase that regulates IRF3 translocation in human macrophages. Our work establishes a high content screening approach for measuring pro-inflammatory pathways in human macrophages and identifies novel ways to inhibit such pathways; among the targets of the screen are several molecules that may merit further development as anti-inflammatory drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app