Add like
Add dislike
Add to saved papers

Mitochondria-localising DNA-binding biscyclometalated phenyltriazole iridium(iii) dipyridophenazene complexes: syntheses and cellular imaging properties.

Two new biscyclometalated complexes [Ir(ptzR)2(dppz)]+ (dppz = dipyridophenazene; ptzRH = 4-phenyl-1-benzyl-1,2,3-triazole (1+) and 4-phenyl-1-propyl-1,2,3-triazole (2+)) have been prepared. The hexafluorophosphate salts of these complexes have been fully characterized and, in one case, the X-ray structure of a nitrate salt was obtained. The DNA binding properties of the chloride salts of the complexes were investigated, as well as their cellular uptake by A2780 and MCF7 cell lines. Both complexes display an increase in the intensity of phosphorescence upon titration with duplex DNA, indicating the intercalation of the dppz ligand and, given that they are monocations, the complexes exhibit appreciable DNA binding affinity. Optical microscopy studies reveal that both complexes are taken up by live cancer cell lines displaying cytosol based luminescence. Colocalization studies with commercial probes show high Pearson coefficients with mitotracker dyes confirming that the new complexes specifically localize on mitochondria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app