Add like
Add dislike
Add to saved papers

MicroRNA-374b inhibits liver cancer progression via down regulating programmed cell death-1 expression on cytokine-induced killer cells.

Oncology Letters 2018 April
Programmed cell death-1 (PD-1) is an oncogene associated with suppressing proliferation and cytokine production of T cells in the progression of liver cancer. microRNAs (miRs) regulate gene expression via specific binding to the target 3'untranslated region of mRNA. In the present study, miR-374b was indicated to interact with PD-1 and affect the tumor-targeting capacity of cytokine-induced killer (CIK) cells. miR-374b inhibitor significantly increased PD-1 expression in CIK cells. A synthetic small interfering (si)RNA targeting PD-1 was employed to silence the expression level of PD-1 in CIK cells. Then, the antitumor effect of siPD-1 in CIK cells was investigated. In vitro study demonstrated that IFN-γ secretion and the concentration of lactate dehydrogenase were significantly increased in the PD-1 knockdown group; however, the viability of HepG2 cells in the PD-1 knockdown group had significantly decreased, compared with the HepG2 cells in the negative control group. In vivo study indicated that mice inoculated with HepG2 cells and CIK cells with PD-1 knocked down had a significantly smaller tumor volume, compared with the control group. To conclude, human CIK cells transfected with siPD-1 can target liver cancer cells and enhance immunotherapy efficacy, and therefore they have potential in the immunotherapy of liver cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app