JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sleep deprivation impairs synaptic tagging in mouse hippocampal slices.

Metaplasticity refers to the ability of experience to alter synaptic plasticity, or modulate the strength of neuronal connections. Sleep deprivation has been shown to have a negative impact on synaptic plasticity, but it is unknown whether sleep deprivation also influences processes of metaplasticity. Therefore, we tested whether 5 h of total sleep deprivation (SD) in mice would impair hippocampal synaptic tagging and capture (STC), a form of heterosynaptic metaplasticity in which combining strong stimulation in one synaptic input with weak stimulation at another input allows the weak input to induce long-lasting synaptic strengthening. STC in stratum radiatum of area CA1 occurred normally in control mice, but was impaired following SD. After SD, potentiation at the weakly stimulated synapses decayed back to baseline within 2 h. Thus, sleep deprivation disrupts a prominent form of metaplasticity in which two independent inputs interact to generate long-lasting LTP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app