Add like
Add dislike
Add to saved papers

Biosynthesis and Activity of Prenylated FMN Cofactors.

Prenylated flavin mononucleotide (prFMN) is a recently discovered cofactor required by the UbiD family of reversible decarboxylases involved in ubiquinone biosynthesis, biological decomposition of lignin, and biotransformation of aromatic compounds. This cofactor is synthesized by UbiX-like prenyltransferases catalyzing the transfer of the dimethylallyl moiety of dimethylallyl-monophosphate (DMAP) to FMN. The origin of DMAP for prFMN biosynthesis and the biochemical properties of free prFMN are unknown. We show that in Escherichia coli cells, DMAP can be produced by phosphorylating prenol using ThiM or dephosphorylating DMAPP using Nudix hydrolases. We produced 14 active prenyltransferases whose properties enabled the purification and characterization of protein-free forms of prFMN. In vitro assays revealed that the UbiD-like ferulate decarboxylase (Fdc1) can be activated by free prFMNiminium or C2'-hydroxylated prFMNiminium under both oxidized and reduced conditions. These insights into the biosynthesis and properties of prFMN will facilitate further elucidation of the biochemical diversity of reversible UbiD (de)carboxylases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app