Add like
Add dislike
Add to saved papers

Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth.

Actinomycetes are an important group of gram-positive bacteria that play an essential role in the rhizosphere ecosystem. The confrontation culture and Oxford cup method were used to evaluate the antagonistic activities of strains, which were isolated from the rhizosphere soil of Mikania micrantha. The two isolates were identified using morphological and physiological tests combined with 16S rRNA-based molecular analysis, respectively. The type I polyketone synthase (PKS-I) was amplified. The constituents of fermentation metabolites were analyzed by gas chromatography mass spectrometry. The plant growth promoting effect was determined. Finally, the growth of wheat seedlings was assessed using the Petri dish method. Overall, of the isolated twelve strains, WZS1-1 and WZS2-1 could significantly inhibit target fungi. Isolate WZS1-1 was identified as Streptomyces rochei, and WZS2-1 was identified as Streptomyces sundarbansensis. In particular, Fusarium graminearum (FG) from wheat was inhibited by more than 80%, and the inhibitory bandwidths against FG were 31 ± 0.3 mm and 19 ± 0.5 mm, respectively. The genes PKS-I were successfully amplified, confirming that these strains are capable of producing biosynthetic secondary metabolites. Major component analysis revealed aliphatic ketones, carboxylic acids, and esters, with n-hexadecanoic acid being the most abundant compound. Plant growth promoting test indicated that both strains produced IAA, presented with orange loops on CAS plates, dissolved phosphorus and potassium, fixed nitrogen, but did not generate organic acids; both strains colonized in soil, while only WZS1-1 colonized in wheat roots. Additionally, the fermentation broth significantly promoted the growth of wheat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app