Add like
Add dislike
Add to saved papers

Nitric Oxide-Releasing Alginates.

Biomacromolecules 2018 April 10
Low and high molecular weight alginate biopolymers were chemically modified to store and release potentially therapeutic levels of nitric oxide (NO). Carbodiimide chemistry was first used to modify carboxylic acid functional groups with a series of small molecule alkyl amines. The resulting secondary amines were subsequently converted to N-diazeniumdiolate NO donors via reaction with NO gas under basic conditions. NO donor-modified alginates stored between 0.4-0.6 μmol NO·mg-1 . In aqueous solution, the NO-release kinetics were diverse (0.3-13 h half-lives), dependent on the precursor amine structure. The liberated NO showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus with pathogen eradication efficiency dependent on both molecular weight and NO-release kinetics. The combination of lower molecular weight (∼5 kDa) alginates with moderate NO-release durations (half-life of ∼4 h) resulted in enhanced killing of both planktonic and biofilm-based bacteria. Toxicity against human respiratory epithelial (A549) cells proved negligible at NO-releasing alginate concentrations required to achieve a 5-log reduction in viability in the biofilm eradication assay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app