Add like
Add dislike
Add to saved papers

Phosphodiesterase 4 Inhibitor Roflumilast Protects Rat Hippocampal Neurons from Sevoflurane Induced Injury via Modulation of MEK/ERK Signaling Pathway.

BACKGROUND/AIMS: Sevoflurane, a commonly used volatile anesthetic, recently has been found has neurotoxicity in the central nervous system of neonatal rodents. This study aimed to reveal whether phosphodiesterase 4 (PDE-4) inhibitor roflumilast has protective functions in sevoflurane-induced nerve damage.

METHODS: Hippocampal neurons were isolated from juvenile rats, and were exposed to sevoflurane with or without roflumilast treatment. Cell viability and apoptosis were respectively assessed by CCK-8 and flow cytometry. Western blot analysis was performed to detect the protein expressions of apoptosis-related factors, and core factors in MEK/ERK and mTOR signaling pathways.

RESULTS: Toxic effects of sevoflurane on hippocampal neurons were observed, as cell viability was reduced, apoptotic cell rate was increased, Bcl-2 was down-regulated, and Bax, cleaved caspase-3 and -9 were up-regulated after 1% sevoflurane exposure for 16 h. Sevoflurane exhibited a temporarily (less than 16 h) inhibitory effect on MEK/ERK pathway, but has no impact on mTOR pathway. Roflumilast promoted the release of cAMP and down-regulated the protein expression of PDE-4. Roflumilast (1 µM) alone has no impact on viability and apoptosis of hippocampal neurons. However, roflumilast increased cell viability and deceased apoptosis in sevoflurane-injured neurons. Besides, roflumilast could recover sevoflurane-induced deactivation of MEK/ERK pathway.

CONCLUSION: To conclude, this study demonstrated a neuroprotective role of roflumilast in sevoflurane-induced nerve damage. Roflumilast promoted hippocampal neurons viability, and reduced apoptosis possibly via modulation of MEK/ERK signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app