Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic diseases among children aged 6 and 7 years.

BACKGROUND: Prenatal environmental phenol and phthalate exposures may alter immune or inflammatory responses leading to respiratory and allergic disease.

OBJECTIVES: We estimated associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic outcomes among children in the Mount Sinai Children's Environmental Health Study.

METHODS: We quantified urinary biomarkers of benzophenone-3, bisphenol A, paradichlorobenzene (as 2,5-dichlorophenol), triclosan, and 10 phthalate metabolites in third trimester maternal samples and assessed asthma, wheeze, and atopic skin conditions via parent questionnaires at ages 6 and 7 years (n = 164 children with 240 observations). We used logistic regression to estimate covariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) per standard deviation difference in natural log biomarker concentrations and examined effect measure modification by child's sex.

RESULTS: Associations of prenatal 2,5-dichlorophenol (all outcomes) and bisphenol A (asthma outcomes) were modified by child's sex, with increased odds of outcomes among boys but not girls. Among boys, ORs for asthma diagnosis per standard deviation difference in biomarker concentration were 3.00 (95% CI: 1.36, 6.59) for 2,5-dichlorophenol and 3.04 (95% CI: 1.38, 6.68) for bisphenol A. Wheeze in the past 12 months was inversely associated with low molecular weight phthalate metabolites among girls only (OR: 0.27, 95% CI: 0.13, 0.59) and with benzophenone-3 among all children (OR: 0.65, 95% CI: 0.44, 0.96).

CONCLUSIONS: Prenatal bisphenol A and paradichlorobenzene exposures were associated with pediatric respiratory outcomes among boys. Future studies may shed light on biological mechanisms and potential sexually-dimorphic effects of select phenols and phthalates on respiratory disease development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app