Add like
Add dislike
Add to saved papers

Design, synthesis, in vivo and in silico evaluation of phenacyl triazole hydrazones as new anticonvulsant agents.

A series of phenacyl triazole hydrazones 3 have been designed based on the hybridization of (arylalkly)triazole and aroyl hydrazone scaffolds as new anticonvulsant agents. The target compounds 3 were easily synthesized from appropriate phenacyl triazoles and aryl acid hydrazides and characterized by IR, NMR and Mass spectroscopy. The in vivo anticonvulsant evaluation of synthesized compounds by using MES and PTZ tests revealed that they are more effective in MES model respect to PTZ test. All compounds showed 33-100% protection against MES-induced seizures at the dose of 100 mg/kg. However, the isonicotinic acid hydrazide derivative 3h showed the best profile of activity in both models. Molecular docking studies of compound 3h with different targets (NMDA, AMPA, GABAA and sodium channel), postulated that the compound acts mainly via GABAA receptors. In silico molecular properties predictions indicated that all compounds have favourable oral bioavailability and BBB permeability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app