Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Loquacious-PD removes phosphate inhibition of Dicer-2 processing of hairpin RNAs into siRNAs.

Drosophila Dicer-2 processes RNA substrates into short interfering RNAs (siRNAs). Loquacious-PD (Loqs-PD), a dsRNA-binding protein that associates with Dicer-2, is required for processing of a subset of RNA substrates including hairpin RNAs into siRNAs. Inorganic phosphate-a small molecule present in all cell types-inhibits Dicer-2 from processing precursor of microRNAs (pre-miRNAs), which are processed by Dicer-1. Whether or how Loqs-PD modulates the inhibitory effect of inorganic phosphate on Dicer-2 processing of RNA substrates is unknown. To address this question, I performed in vitro hairpin RNA processing assay with Dicer-2 in the presence or absence of Loqs-PD and/or inorganic phosphate. I found that inorganic phosphate inhibits Dicer-2 alone, but not Dicer-2 + Loqs-PD, from processing blunt-end hairpin RNAs into siRNAs. Thus, Loqs-PD removes the inhibitory effect of inorganic phosphate on Dicer-2 processing of blunt-end hairpin RNAs, allowing siRNA production in the presence of inorganic phosphate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app