Add like
Add dislike
Add to saved papers

The inhibitory effect of farnesiferol C against catalase; Kinetics, interaction mechanism and molecular docking simulation.

Farnesiferol C (FC) is a natural sesquiterpene coumarin, which includes a widely range of biological activities. In this work, effects of FC on the structure and catalytic function of bovine liver catalase (BLC) was assessed by various spectroscopic and theoretical methods. Kinetic studies showed that FC has a remarkable inhibitory activity on BLC via mixed-type inhibition. The IC50 value as the inhibitory strength of FC was evaluated 1.5μM. Fluorescence spectroscopy, synchronous fluorescence, CD spectroscopy and UV-vis absorption studies revealed conformational changes in the tertiary and secondary structure of BLC as well as the position of the heme group in the presence of different concentrations of FC. Fluorescence studies revealed that FC quenches intrinsic emission of catalase via static quenching process. The binding constants at 298 and 310K were calculated 1.17×105 M-1 and 1.0×105 M-1 , respectively. Thermodynamic data suggested that hydrophobic interactions play a major role in the binding reaction of FC on BLC. Structural studies indicated that the binding FC to the enzyme is responsible for the changes of the percentage of secondary structures' elements especially α-helix. From the simulation data, the role of Arg353 residue in the mechanism of catalase inhibition has been recognized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app