Add like
Add dislike
Add to saved papers

TRPA1 Acts in a Protective Manner in Imiquimod-Induced Psoriasiform Dermatitis in Mice.

This study revealed the modulatory role of transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) cation channels in the Aldara-induced (5% imiquimod) murine psoriasis model using selective antagonists and genetically altered animals. We have also developed a refined localized model to enable internal controls and reduce systemic effects. Skin pathology was quantified by measuring skin thickness, scaling, blood flow, and analyzing dermal cellular infiltrate, whereas nocifensive behaviors were also observed. Cytokine gene expression profiles were measured ex vivo. Psoriasiform dermatitis was significantly enhanced in TRPA1 knockout mice and with TRPA1 antagonist (A967079) treatment. By comparison, symptoms were decreased when TRPV1 function was inhibited. Imiquimod induced Ca2+ influx in TRPA1-, but not in TRPV1-expressing cell lines. Immunohistochemical studies revealed that CD4+ T helper cells express TRPA1 but not TRPV1 ion channels in mice skin. Compared with the TRPV1 knockout animals, additional elimination of the TRPA1 channels in the TRPV1/TRPA1 double knockout mice did not modify the outcome of the imiquimod-induced reaction, further supporting the dominant role of TRPV1 in the process. Our results suggest that the protective effects in psoriasiform dermatitis can be mediated by the activation of neuronal and nonneuronal TRPA1 receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app