JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Asymmetric Orientation Distribution Functions (AODFs) revealing intravoxel geometry in diffusion MRI.

Characterization of anisotropy via diffusion MRI reveals fiber crossings in a substantial portion of voxels within the white-matter (WM) regions of the human brain. A considerable number of such voxels could exhibit asymmetric features such as bends and junctions. However, widely employed reconstruction methods yield symmetric Orientation Distribution Functions (ODFs) even when the underlying geometry is asymmetric. In this paper, we employ inter-voxel directional filtering approaches through a cone model to reveal more information regarding the cytoarchitectural organization within the voxel. The cone model facilitates a sharpening of the ODFs in some directions while suppressing peaks in other directions, thus yielding an Asymmetric ODF (AODF) field. We also show that a scalar measure of AODF asymmetry can be employed to obtain new contrast within the human brain. The feasibility of the technique is demonstrated on in vivo data obtained from the MGH-USC Human Connectome Project (HCP) and Parkinson's Progression Markers Initiative (PPMI) Project database. Characterizing asymmetry in neural tissue cytoarchitecture could be important for localizing and quantitatively assessing specific neuronal pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app