Add like
Add dislike
Add to saved papers

Global stability for a 2n+1 dimensional HIV/AIDS epidemic model with treatments.

In this work, we derive and analyze a 2n+1-dimensional deterministic differential equation modeling the transmission and treatment of HIV (Human Immunodeficiency Virus) disease. The model is extended to a stochastic differential equation by introducing noise in the transmission rate of the disease. A theoretical treatment strategy of regular HIV testing and immediate treatment with Antiretroviral Therapy (ART) is investigated in the presence and absence of noise. By defining R0, n , Rt, n and Rt,n as the deterministic basic reproduction number in the absence of ART treatments, deterministic basic reproduction number in the presence of ART treatments and stochastic reproduction number in the presence of ART treatment, respectively, we discuss the stability of the infection-free and endemic equilibrium in the presence and absence of treatments by first deriving the closed form expression for R0, n , Rt, n and Rt,n . We show that there is enough treatment to avoid persistence of infection in the endemic equilibrium state if Rt,n =1. We further show by studying the effect of noise in the transmission rate of the disease that transient epidemic invasion can still occur even if Rt, n  < 1. This happens due to the presence of noise (with high intensity) in the transmission rate, causing Rt,n >1. A threshold criterion for epidemic invasion in the presence and absence of noise is derived. Numerical simulation is presented for validation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app