Add like
Add dislike
Add to saved papers

Responses of blood biochemistry, fatty acid composition and expression of microRNAs to heat stress in genetically improved farmed tilapia (Oreochromis niloticus).

We investigated the effects of heat stress on genetically improved farmed tilapia, focusing on metabolic and immune responses. Differences in blood parameters, serum biochemistry, muscle fatty acid composition, and microRNA (miRNA) expression were analyzed in fish under heat stress. Fish were exposed to heat stress at 35 °C and sampled at 0, 6, 12, 24, and 48 h after exposure and compared with a control group maintained at 28 °C. The results showed that red and white blood cell counts, hemoglobin levels, and hematocrit values tended to increase (P < 0.05) and reached their maximum levels after 24 h, then declined. Acute heat stress enhanced serum glucose, total protein, and total cholesterol levels, and muscle fatty acid components were also altered. Serum alanine aminotransferase (ALT) activity was significantly increased after heat stress for 6 and 12 h. Polyunsaturated fatty acids levels were increased after heat stress for 12 and 24 h, whereas levels of monounsaturated fatty acids decreased in response to heat stress. Expression of hepatic miR-1 and miR-122 was significantly upregulated, and expression of miR-10c was significantly increased (P < 0.05) only after heat stress for 48 h. Acute heat stress altered metabolism closely related to the immune system and the liver of tilapia. These findings contribute to a theoretical framework for tilapia breeding at high temperatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app