Add like
Add dislike
Add to saved papers

Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovata via a reducing-equivalent transfer mediator.

The biological conversion of carbon monoxide (CO) has been highlighted for the development of a C1 gas biorefinery process. Despite this, the toxicity and low reducing equivalent of CO uptake make biological conversion difficult. The use of synthetic co-cultures is an alternative way of enhancing the performance of CO bioconversion. This study evaluated a synthetic co-culture consisting of Citrobacter amalonaticus Y19 and Sporomusa ovata for acetate production from CO. In this consortium, the CO2 and H2 produced by the water-gas shift reaction of C. amalonaticus Y19, were utilized further by S. ovata. Higher acetate production was achieved in the co-culture system compared to the monoculture counterparts. Furthermore, syntrophic cooperation via various reducing equivalent carriers provided new insights into the synergistic metabolic benefits with a toxic and refractory substrate, such as CO. This study also suggests an appropriate model for examining the syntrophic interaction between microbial species in a mixed community.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app