Add like
Add dislike
Add to saved papers

The on-fibrillation-pathway membrane content leakage and off-fibrillation-pathway lipid mixing induced by 40-residue β-amyloid peptides in biologically relevant model liposomes.

Disruption of the synaptic plasma membrane (SPM) induced by the aggregation of β-amyloid (Aβ) peptides has been considered as a potential mechanism for the neurotoxicity of Aβ in Alzheimer's disease (AD). However, the molecular basis of such membrane disruption process remains unclear, mainly because of the severe systematic heterogeneity problem that prevents the high-resolution studies. Our previous studies using a two-component phosphatidylcholine (PC)/phosphatidylglycerol (PG) model liposome showed the presence of Aβ-induced membrane disruptions that were either on the pathway or off the pathway of fibril formation. The present study focuses on a more biologically relevant model membrane with compositions that mimic the outer leaflet of SPMs. The main findings are: (1) the two competing membrane disruption effects discovered in PC/PG liposomes and their general peptide-to-lipid-molar-ratio dependence persist in the more complicated membrane models; (2) the SPM-mimic membrane promotes the formation of certain "on-fibrillation-pathway" intermediates with higher α-helical structural population, which lead to more rapid and significant of membrane content leakage; (3) although the "on-fibrillation-pathway" intermediate structures show dependence on membrane compositions, there seems to be a common final fibril structure grown from different liposomes, suggesting that there may be a predominant fibril structure for 40-residue Aβ (i.e. Aβ40 ) peptides in biologically-relevant membranes. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app