Add like
Add dislike
Add to saved papers

Multi-dimension apportionment of clean air "parade blue" phenomenon in Beijing.

The mass concentration and major chemical components of fine particulate matter were measured before, during and after Beijing's massive parade commemorating 70th anniversary of the Chinese Victory in World War II on September 3, 2015. Regional emission inventory, positive matrix factorization (PMF), observations from space and backward air mass trajectories were jointly applied to identify the major pollution sources and their temporal and spatial variations. The contributions of emissions variations and the meteorological conditions related to the "parade blue" phenomenon in Beijing and its surrounding areas were investigated in detail. The main cause of the decreased PM2.5 mass concentration was attributed to the absolute reduction in emissions of primary air pollutants. The chemical composition of PM2.5 varied significantly before, during and after the parade. Fugitive dust particles were well controlled, the secondary formation of PM2.5 was reduced along with the controlled gaseous precursors' emissions from vehicles and industrial sources during the temporary intensified control period. During the parade period, the SO2 and NO2 column concentrations in Beijing and the surrounding areas decreased sharply, indicating that the coordinated reduction in primary emissions from the surrounding areas of Beijing played an important role in lowering the ambient concentration of SO2 and NO2 and accordingly lowered PM2.5 and improved the regional air quality. A comparison of the temperature, humidity, and wind speed and direction during the same periods in 2014 and 2015 showed that the meteorological conditions positively influenced the achievement of "parade blue".

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app