Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanistic Pathway on Human α-Glucosidase Maltase-Glucoamylase Unveiled by QM/MM Calculations.

The excessive consumption of starch in human diets is associated with highly prevalent chronic metabolic diseases such as type 2 diabetes and obesity. α-Glucosidase enzymes contribute to the digestion of starch into glucose and are thus attractive therapeutic targets for diabetes. Given that the active sites of the various families of α-glucosidases have different sizes and structural features, atomistic descriptions of the catalytic mechanisms of these enzymes can support the development of potent and selective new inhibitors. Maltase-glucoamylase (MGAM), in particular, has a N-terminal catalytic domain (NtMGAM) that has shown high inhibitor selectivity. We provide here the first theoretical study of the human NtMGAM catalytic domain, employing a hybrid QM/MM approach with the ONIOM method to disclose the full atomistic details of the reactions promoted by this domain. We observed that the catalytic activity follows the classical Koshland double-displacement mechanistic pathway that uses general acid and base catalysts. A covalent glycosyl-enzyme intermediate was formed and hydrolyzed in the first and second mechanistic steps, respectively, through oxocarbenium ion-like transition state structures. The overall reaction is of dissociative type. Both transition state geometries differ from those known to occur in other glycosidases. The activation free energy for the glycosylation rate-limiting step agrees with the experimental barrier of 15.8 kcal·mol-1 . Both individual mechanistic steps of the reaction are exoergonic. These structural results may serve as the basis for the design of transition state analogue inhibitors that specifically target the intestinal NtMGAM catalytic domain, thus delaying the production of glucose in diabetic and obese patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app