Add like
Add dislike
Add to saved papers

Third-order discrete unified gas kinetic scheme for continuum and rarefied flows: Low-speed isothermal case.

Physical Review. E 2018 Februrary
An efficient third-order discrete unified gas kinetic scheme (DUGKS) is presented in this paper for simulating continuum and rarefied flows. By employing a two-stage time-stepping scheme and the high-order DUGKS flux reconstruction strategy, third order of accuracy in both time and space can be achieved in the present method. It is also analytically proven that the second-order DUGKS is a special case of the present method. Compared with the high-order lattice Boltzmann equation-based methods, the present method is capable to deal with the rarefied flows by adopting the Newton-Cotes quadrature to approximate the integrals of moments. Instead of being constrained by the second order (or lower order) of accuracy in the time-splitting scheme as in the conventional high-order Runge-Kutta-based kinetic methods, the present method solves the original Boltzmann equation, which overcomes the limitation in time accuracy. Typical benchmark tests are carried out for comprehensive evaluation of the present method. It is observed in the tests that the present method is advantageous over the original DUGKS in accuracy and capturing delicate flow structures. Moreover, the efficiency of the present third-order method is also shown in simulating rarefied flows.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app