Add like
Add dislike
Add to saved papers

Double-layer force suppression between charged microspheres.

Physical Review. E 2018 Februrary
In this paper we propose a protocol to suppress double-layer forces between two microspheres immersed in a dielectric medium, being one microsphere metallic at a controlled potential ψ_{M} and the other a charged one either metallic or dielectric. The approach is valid for a wide range of distances between them. We show that, for a given distance between the two microspheres, the double-layer force can be totally suppressed by simply tuning ψ_{M} up to values dictated by the linearized Poisson-Boltzmann equation. Our key finding is that such values can be substantially different from the ones predicted by the commonly used proximity force approximation, also known as the Derjaguin approximation, even in situations where the latter is expected to be accurate. The proposed procedure can be used to suppress the double-layer interaction in force spectroscopy experiments, thus paving the way for measurements of other surface interactions, such as Casimir dispersion forces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app