Add like
Add dislike
Add to saved papers

Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy.

Microtubules participate in fundamental cellular processes, including chromosomal segregation and cell division, migration and intracellular trafficking. Their proper function is required for correct central nervous system development and operative preservation, and mutations in genes coding tubulins, the constituting units of microtubules, underlie a family of neurodevelopmental and neurodegenerative diseases, collectively known as 'tubulinopathies', characterized by a wide range of neuronal defects resulting from defective proliferation, migration and function. Here, we causally link a previously unreported missense mutation in TUBB2A (c.1249G>A, p.D417N), encoding one of the neuron-specific β-tubulin isotype II, to a disorder characterized by progressive spastic paraplegia, peripheral sensory-motor polyneuropathy and ataxia. Asp417 is a highly conserved solvent-exposed residue at the site mediating binding of kinesin superfamily motors. Impaired binding to KIF1A, a neuron-specific kinesin required for transport of synaptic vesicle precursors of the disease-associated TUBB2A mutant, was predicted by structural analyses and confirmed experimentally in vitro. We show that overexpression of TUBB2AD417N disrupts the mitotic spindle bipolarity and morphology and affects the M phase entry and length. Differently from the TUBB2AN247K and TUBB2AA248V, two mutants previously identified to affect neurodevelopment, TUBB2AD417N retains the ability to assemble into microtubules. Consistent with the differential clinical and structural impact, TUBB2AA248V does not drastically affect TUBB2A binding to KIF1A, nor mitotic spindle bipolarity. Overall, our data demonstrate a pathogenic role of the p.D417N substitution that is different from previously reported TUBB2A mutations and expand the phenotypic spectrum associated with mutations in this gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app