Add like
Add dislike
Add to saved papers

Performance of (in)active anodic materials for the electrooxidation of phenolic wastewaters from cashew-nut processing industry.

Chemosphere 2018 June
This study investigated the anodic oxidation of phenolic wastewater generated by cashew-nut processing industry (CNPI) using active (Ti/RuO2 -TiO2 ) and inactive (boron doped diamond, BDD) anodes. During electrochemical treatment, various operating parameters were investigated, such as current density, chemical oxygen demand (COD), total phenols, O2 production, temperature, pH, as well as current efficiency and energy consumption. After electrolysis under optimized working conditions, samples were evaluated by chromatography and toxicological tests against L. sativa. When both electrode materials were compared under the same operating conditions, higher COD removal efficiency was achieved for BDD anode; achieving lower energy requirements when compared with the values estimated for Ti/RuO2 -TiO2 . The presence of Cl- in the wastewater promoted the electrogeneration of strong oxidant species as chlorine, hypochlorite and mainly hypochlorous acid, increasing the efficiency of degradation process. Regarding the temperature effect, BDD showed slower performances than those achieved for Ti/RuO2 -TiO2 . Chromatographic and phytotoxicity studies indicated formation of some by-products after electrolytic process, regardless of the anode evaluated, and phytotoxic action of the effluent. Results encourage the applicability of the electrochemical method as wastewater treatment process for the CNPI, reducing depuration time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app