Add like
Add dislike
Add to saved papers

Intrinsic Orbital Angular Momentum States of Neutrons.

It has been shown that single-particle wave functions, of both photons and electrons, can be created with a phase vortex, i.e., an intrinsic orbital angular momentum (OAM). A recent experiment has claimed similar success using neutrons [C. W. Clark et al., Nature, 525, 504 (2015)NATUAS0028-083610.1038/nature15265]. We show that their results are insufficient to unambiguously demonstrate OAM, and they can be fully explained as phase contrast interference patterns. Furthermore, given the small transverse coherence length of the neutrons in the original experiment, the probability that any neutron was placed in an OAM state is vanishingly small. We highlight the importance of the relative size of the coherence length, which presents a unique challenge for neutron experiments compared to electron or photon work, and we suggest improvements for the creation of neutron OAM states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app