Add like
Add dislike
Add to saved papers

Enhancing Cavity Quantum Electrodynamics via Antisqueezing: Synthetic Ultrastrong Coupling.

We present and analyze a method where parametric (two-photon) driving of a cavity is used to exponentially enhance the light-matter coupling in a generic cavity QED setup, with time-dependent control. Our method allows one to enhance weak-coupling systems, such that they enter the strong coupling regime (where the coupling exceeds dissipative rates) and even the ultrastrong coupling regime (where the coupling is comparable to the cavity frequency). As an example, we show how the scheme allows one to use a weak-coupling system to adiabatically prepare the highly entangled ground state of the ultrastrong coupling system. The resulting state could be used for remote entanglement applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app