Add like
Add dislike
Add to saved papers

Strong Exciton-Plasmon Coupling in Silver Nanowire Nanocavities.

The interaction between plasmonic and excitonic systems and the formation of hybridized states is an area of intense interest due to the potential to create exotic light-matter states. We report herein coupling between the leaky surface plasmon polariton (SPP) modes of single Ag nanowires and excitons of a cyanine dye (TDBC) in an open nanocavity. Silver nanowires were spin-cast onto glass coverslips, and the wavevector of the leaky SPP mode was measured by back focal plane (BFP) microscopy. Performing these measurements at different wavelengths allows the generation of dispersion curves, which show avoided crossings after deposition of a concentrated TDBC-PVA film. The Rabi splitting frequencies (Ω) determined from the dispersion curves vary between nanowires, with a maximum value of Ω = 390 ± 80 meV. The experiments also show an increase in attenuation of the SPP mode in the avoided crossing region. The ability to measure attenuation for the hybrid exciton-SPP states is a powerful aspect of these single nanowire experiments because this quantity is not readily available from ensemble experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app