Add like
Add dislike
Add to saved papers

Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function.

Ice accretion presents a severe risk for human safety. Although great efforts have been made for developing icephobic surfaces (the surface with an ice adhesion strength below 100 kPa), expanding the lifetime of state-of-the-art icephobic surfaces still remains a critical unsolved issue. Herein, a novel icephobic material is designed by integrating an interpenetrating polymer network (IPN) into an autonomous self-healing elastomer, which is applied in anti-icing for enhancing the mechanical durability. The molecular structure, surface morphology, mechanical properties, and durable icephobicity of the material were studied. The creep behaviors of the new icephobic material, which were absent in most relevant studies on self-healing materials, were also investigated in this work. Significantly, the material showed great potentials for anti-icing applications with an ultralow ice adhesion strength of 6.0 ± 0.9 kPa, outperforming many other icephobic surfaces. The material also exhibited an extraordinary durability, showing a very low long-term ice adhesion strength of ∼12.2 kPa after 50 icing/deicing cycles. Most importantly, the material was able to exhibit a self-healing property from mechanical damages in a sufficiently short time, which shed light on the longevity of icephobic surfaces in practical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app