Add like
Add dislike
Add to saved papers

Giant magnetoelectric effects in pseudo 1-3 heterostructure films with FeGa nanocluster-assembled micron-scale discs embedded into Bi 5 Ti 3 FeO 15 matrices.

Nanoscale 2018 May 32
Nanocluster-assembled FeGa micron-scale discs prepared by low-energy cluster beam deposition were embedded into Bi5Ti3FeO15 matrices to form pseudo 1-3 heterostructure films. The microstructures and multiferroic properties were investigated. Good ferroelectric, piezoelectric, and ferromagnetic properties and giant magnetoelectric effects are achieved for the heterostructure films, which is ascribed to the depression of the clamped effect from the hard substrate for such pseudo 1-3 structures and the multi-interface coupling between the large magnetostrictive coefficient of FeGa micron-scale discs and the high piezoelectric coefficient of the circle surrounding the Bi5Ti3FeO15 matrices. Such a strong interface strain coupling between the micron discs and the inhomogeneously multiferroic matrices induces obvious magnetoelectric coupling behaviors. Besides, the interaction between the ferroelectric domains and the spin orders in the multiferroic matrices also contributes to the magnetoelectric output. The present work provides a potential way to fabricate clamped-free magnetoelectric films for microdevice applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app