Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Silicone Microemulsion Structures Are Maintained During Polymerization with Reactive Surfactants.

Bicontinuous microemulsions exhibit domain structures on the nanoscale (<20 nm). Normally, such fine details are lost during the conversion from a fluid microemulsion to solid elastomeric materials, as a consequence of interfacial destabilization via polymerization of either the oil phase or monomers in the aqueous phase. Very little is known about the polymerization of silicone microemulsions and the morphological changes that occur upon transition from a nanostructured liquid to a solid matrix. Silicone microemulsions polymerized by free radical (aqueous phase) and condensation (silicone phase) processes, respectively, were characterized by small-angle X-ray scattering and transmission electron microscopy. It was found that cross-linking of the silicone phase alone led, over time, to large increase of the size of the microemulsion nanodomains. By contrast, photoinduced polymerization of a reactive surfactant and acrylic monomers in the aqueous phase was effective at retaining bicontinuous nanomorphology, irrespective of the degree of cross-linking of the silicone phase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app