Add like
Add dislike
Add to saved papers

Enhanced Electrochemical Performance of Fast Ionic Conductor LiTi 2 (PO 4 ) 3 -Coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathode Material.

Layered LiNi1/3 Co1/3 Mn1/3 O2 (NCM333) is successfully coated by fast ionic conductor LiTi2 (PO4 )3 (LTP) via a wet chemical method. The effects of LTP on the physicochemical properties and electrochemical performance are studied. The results reveal that a highly layered structure of NCM333 can be well maintained with less cation mixing after LTP coating. LTP of about 5 nm thickness is coated on the surface of NCM333. Such an LTP coating layer can effectively suppress the side reactions between NCM333 and electrolyte but will not hinder the lithium ion transmission. As a result, LTP-coated NCM333 owns an improved capability and cyclic performance, for example, NCM333/LTP delivers an initial capacity as high as 121.0 mA h g-1 with a capacity retention ratio of 82.3% after 200 cycles at 10 C, whereas NCM333 only has an initial capacity of 120.4 mA h g-1 with a very low capacity retention ratio of 66.4%. This method of using a fast ionic conductor like LTP as a coating material may provide a simple and effective strategy to modify those electrode materials with poor cyclic performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app