Add like
Add dislike
Add to saved papers

One-dimensional zirconium-doped titanate nanostructures for rapid and capacitive removal of multiple heavy metal ions from water.

We report a novel, one-dimensional zirconium-doped layered trititanate with a porous core and a textured surface of ultrafine nanofibers (∼5 nm) by the hydrothermal alkaline treatment of electrospun fibers. It demonstrates superior efficiency for rapid, capacitive and simultaneous removal of multiple heavy metal ions such as Pb2+, Cd2+, Cu2+ and Zn2+. The adsorption is exceptionally rapid, showing 100% removal of Cu2+ in 10 min, and 100% removal of Pb2+ and Cd2+ in 20 min in water with a wide range of concentrations from 0.1 to 5 mmol L-1. It displays an extraordinary adsorption capacity for highly toxic Pb2+ (2.91 mmol g-1). The sorption isotherms for Pb2+, Cd2+, Cu2+ and Sr2+ agree with the Langmuir model, indicating a monolayer adsorption. Corresponding sorption kinetics follow a pseudo-second-order model, suggesting a chemisorption-controlled adsorption process operating under the soft-hard Lewis acid-base principle. The crystal structure of the layered structure is retained after the ion-exchange process, endowing it with promising potential for the remediation of heavy metal contaminated water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app