Add like
Add dislike
Add to saved papers

Chromosome-wide gene dosage rebalance may benefit tumor progression.

The high-risk of tumor initiation in patients with Turner syndrome (TS) characterized by X chromosome monosomy in women has been well established and aneuploidy, defined as an abnormal number of chromosomes, is a common feature in human cancer. However, the underlying mechanisms of X chromosome aneuploidy promoting tumorigenesis remain obscure. We propose that chromosome-wide gene dosage imbalance (CDI) may serve as an important mechanism. Here, we assess the relative expression ratios of X chromosome and autosomes (expression ratios of X:AA) between tumor samples and adjacent normal samples across 16 tumor types using expression datasets from The Cancer Genome Atlas (TCGA) project. Our results show that the expression ratios of X:AA in tumor samples are frequently rebalanced to a lower level compared to those in adjacent normal samples, which is termed chromosome-wide gene dosage rebalance (CDR) thereafter. Gene ontology (GO) analysis of differentially expression genes from X chromosome reveals that downregulation of multicellularity-related genes and upregulation of unicellularity-related genes in tumors form a distinctive feature and enrichment analysis shows that downregulated genes are enriched in tumor suppressor genes, which indicate that CDR benefits tumor progression. Further experimental results prove that disturbance of X chromosome expression by knocking down of XIST in breast cancer cells, which functions in initiation phase of X chromosome inactivation (XCI), inhibits tumor progression. Our results demonstrate that the prevalent CDRs across tumor types serve as an important mechanism in promoting tumor progression, which partially explains the high risk of tumor in patients with TS and also provides a new cancer therapy from the CDR perspective.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app