JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Progressive Increases in Dietary Iron Are Associated with the Emergence of Pathologic Disturbances of Copper Homeostasis in Growing Rats.

Background: Consumption of a high-iron diet causes copper deficiency in weanling rodents; however, the minimum amount of dietary iron that disrupts copper homeostasis has not been established.

Objective: We tested the hypothesis that dietary iron at only several-fold above physiologic requirements would cause copper depletion.

Methods: Weanling male Sprague-Dawley rats (n = 6/group) were fed AIN-93G-based diets with adequate (88 µg Fe/g = 1×), or excessive (4×, 9.5×, 18.5×, 38×, or 110×) iron content for 7 wk (110× group, due to notable morbidity) or 8 wk (all other groups). Copper-related physiologic parameters were then assessed.

Results: A hierarchy of copper-related, pathologic symptoms was noted as dietary iron concentrations increased. All statistical comparisons reported here refer to differences from the 1× (i.e., control) group. The highest iron concentration (110×) impaired growth (final body weights decreased ∼40%; P < 0.0001), and caused anemia (blood hemoglobin and hematocrit decreased ∼65%; P < 0.0001) and hepatic copper depletion (>85% reduction; P < 0.01). Cardiac hypertrophy occurred in the 110× (∼130% increase in mass; P < 0.0001) and 38× (∼25% increase; P < 0.05) groups, whereas cardiac copper content was lower in the 110× (P < 0.01), 38× (P < 0.01), and 18.5× (P < 0.05) groups (∼70% reductions). Splenic copper was also depleted in the 110× (>90% reduction; P < 0.0001), and in the 38× (P < 0.001) and 18.5× (P < 0.01) groups (∼70% reductions). Moreover, serum ceruloplasmin activity was decreased in the 110× and 38× (>90% reductions; P < 0.0001), and 18.5× (P < 0.001) and 9.5× (P < 0.05) (∼50% reductions) groups, typifying moderate to severe copper deficiency.

Conclusions: Increasing dietary iron intakes to ∼9.5-fold above dietary recommendations caused copper deficiency. Importantly, human iron supplementation is common, and recommended intakes for at-risk individuals may be ≤10-fold above the RDA. Whether these iron intakes perturb copper metabolism is worth considering, especially since copper defi-ciency can impair iron utilization (e.g., by decreasing the ferroxidase activity of ceruloplasmin).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app