Add like
Add dislike
Add to saved papers

Undiluted human whole blood uric acid detection using a graphitized mesoporous carbon modified electrode: a potential tool for clinical point-of-care uric acid diagnosis.

Analyst 2018 March 17
Direct sensing of uric acid (UA) in an undiluted whole blood sample is reported here taking human whole blood as an analyte and a self-supporting electrolyte. Among various solid electrodes (Pt, Au, GCE, and GCE/Nafion) and carbon nanomaterials (carbon nanofibers, graphene oxide, graphite nanopowder, graphitized mesoporous carbon (GMC), single-walled carbon nanotubes, and multiwalled carbon nanotubes) tested, a GMC-modified glassy carbon electrode, designated as GCE/GMC, showed a remarkable response towards direct electrochemical oxidation of blood uric acid at ∼0.25 V vs. Ag/AgCl, unlike the poor and/or feeble current signals with the other unmodified and modified electrodes. It is plausible that the mesoporous nature of the GMC favours the formation of a blood-GMC bio-corona through internalization and provides straight access to blood-matrixed uric acid. Furthermore, the effects of the scan rate and interference with various biochemicals on the GCE/GMC were analysed. The electrochemical oxidation reaction is found to be diffusion controlled in nature and there is no interference from common biochemicals like ascorbic acid, glucose, tryptophan, H2O2, xanthine, hypoxanthine, cysteine, nitrate, nitrite, and sulfide in blood. Real blood UA sample analysis was demonstrated with comparable UA analysis results from the clinical measurement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app