Add like
Add dislike
Add to saved papers

System Identification Algorithm for Non-Uniformly Sampled Data.

Considerable effort has been devoted to the development of algorithms for identification of parsimonious discrete time models from noisy input/output data sets since this facilitates controller design. Several methods, such as nuclear norm minimization, have been used to provide approximate solutions to this non-convex problem. However, even though the field of continuous time system identification is now mature, results on parsimonious model identification of continuous time systems are still very limited. In this paper, an atomic norm minimization method is proposed for this purpose that can handle non-uniformly sampled data without preprocessing. The proposed approach provides an efficient way to use noisy, non-uniformly sampled data to determine a reliable, low-order continuous time model. Numerical performance is illustrated using academic examples and simulated behavioral data from a smoking cessation study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app