Add like
Add dislike
Add to saved papers

Triptolide induces autophagy and apoptosis through ERK activation in human breast cancer MCF-7 cells.

To investigate the effects of triptolide (TPI) on proliferation, autophagy and death in human breast cancer MCF-7 cells, and to elucidate the associated molecular mechanisms, intracellular alterations were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays. The results of the MTT assay revealed that TPI significantly reduced the MCF-7 cell survival rate when the concentration was >10 nmol/l. TPI activated a caspase cascade reaction by regulating Bcl-2-associated X protein (Bax), caspase-3 and B-cell lymphoma 2 expression, and promoted programmed cell death via the mitochondrial pathway. The results demonstrated that TPI significantly reduced the cell proliferation rate and viability in a time- and dose-dependent manner, which was confirmed by western blotting and immunofluorescent staining. TPI induced autophagy and influenced p38 mitogen-activated protein kinases, extracellular signal-regulated kinase (Erk)1/2, and mammalian target of rapamycin (mTOR) phosphorylation, which resulted in apoptosis. When cells were treated with a combination of TPI and the Erk1/2 inhibitor U0126, the downregulation of P62 and upregulation of Bax were inhibited, which demonstrated that the inhibition of Erk1/2 reversed the autophagy changes induced by TPI. The results indicated that Erk1/2 activation may be a novel mechanism by which TPI induces autophagy and apoptosis in MCF-7 breast cancer cells. In conclusion, TPI affects the proliferation and apoptosis of MCF-7 cells, potentially via autophagy and p38/Erk/mTOR phosphorylation. The present study offers a novel view of the mechanisms by which TPI regulates cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app