Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

USP28 Deficiency Promotes Breast and Liver Carcinogenesis as well as Tumor Angiogenesis in a HIF-independent Manner.

Recent studies suggest that the ubiquitin-specific protease USP28 plays an important role in cellular repair and tissue remodeling, which implies that it has a direct role in carcinogenesis. The carcinogenic potential of USP28 was investigated in a comprehensive manner using patients, animal models, and cell culture. The findings demonstrate that overexpression of USP28 correlates with a better survival in patients with invasive ductal breast carcinoma. Mouse xenograft experiments with USP28-deficient breast cancer cells also support this view. Furthermore, lack of USP28 promotes a more malignant state of breast cancer cells, indicated by an epithelial-to-mesenchymal (EMT) transition, elevated proliferation, migration, and angiogenesis as well as a decreased adhesion. In addition to breast cancer, lack of USP28 in mice promoted an earlier onset and a more severe tumor formation in a chemical-induced liver cancer model. Mechanistically, the angio- and carcinogenic processes driven by the lack of USP28 appeared to be independent of HIF-1α, p53, and 53BP1. Implications: The findings of this study are not limited to one particular type of cancer but are rather applicable for carcinogenesis in a more general manner. The obtained data support the view that USP28 is involved in tumor suppression and has the potential to be a prognostic marker. Mol Cancer Res; 16(6); 1000-12. ©2018 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app